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Clinical Implications
The results of this study may provide the clinician additional 
reason to use an electric handpiece over an air-turbine hand-
piece, as the electric handpiece is significantly more efficient at 
cutting various materials than is the air-turbine handpiece.  

Statement of problem. Dentistry is gravitating toward the increased use of electric handpieces. The dental profes-
sional should have sufficient evidence to validate the switch from an air-turbine handpiece to an electric handpiece. 
However, there is little research quantifying the cutting efficiency of electric and air-turbine handpieces. Studies that 
do quantify cutting efficiency typically do so with only a single material.

Purpose. The purpose of this study was to compare the cutting efficiency of an electric handpiece and an air-turbine 
handpiece, using various materials commonly used in dentistry. 

Material and methods. Seven materials: Macor (machinable glass ceramic), silver amalgam, aluminum oxide, zirco-
nium oxide, high noble metal alloy, noble metal alloy, and base metal alloy, were each cut with a bur 220 times; 110 
times with an electric handpiece, and 110 times with an air-turbine handpiece. The weight difference of the material 
was calculated by subtracting the weight of the material after a cut from the weight of the material before the cut. The 
cutting efficiency was calculated by dividing the weight difference by the duration of the cut (g/s). Data were analyzed 
by a 2-way analysis of variance followed by Tukey’s Honestly Significant Difference (HSD) test (α=.05). 

Results. The electric handpiece cut more efficiently than the air-turbine handpiece (F=3098.9, P<.001). In particular, 
the high noble metal alloy, silver amalgam, and Macor were cut more efficiently with the electric handpiece (0.0383 
±0.0002 g/s, 0.0260 ±0.0002 g/s, and 0.0122 ±0.0002 g/s, respectively) than with the air-turbine handpiece (0.0125 
±0.0002 g/s, 0.0142 ±0.0002 g/s, and 0.008 ±0.0002 g/s, respectively).

Conclusions. The electric handpiece is more efficient at cutting various materials used in dentistry, especially ma-
chinable glass ceramic, silver amalgam, and high noble alloy, than the air-turbine handpiece. (J Prosthet Dent 
2010;103:101-107)
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One of the most significant ad-
vances in dentistry has been the de-
velopment of the dental handpiece. 
In 1868, Green introduced the pneu-
matic handpiece.1 This was an air-
driven handpiece powered by foot 

bellows, which provided air through 
rubber tubes to the handpiece. How-
ever, Green’s instrument was not 
nearly as efficient as the Morrison 
foot pedal engine introduced in 1871, 
which was the first patented and 

commercially available dental engine, 
and which revolutionized the practice 
of dentistry.1 The early handpieces of 
the 19th century were difficult to con-
trol and operated at low speeds, mak-
ing excavations tedious.2 In fact, the 
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Morrison handpiece operated at 600 
to 800 revolutions per minute (rpm).1 
Fortunately, the turn of the century 
was marked by vast improvements to 
these earlier handpieces.

The most notable handpiece of 
the 20th century was a high-speed air-
driven contra-angle handpiece intro-
duced by Borden in 1957. The Borden 
Airotor was an air-turbine handpiece 
that obtained speeds of up to 300,000 
rpm. This handpiece was an immedi-
ate commercial success and began a 
new era of high-speed dentistry.3 Both 
diamond rotary cutting instruments 
and carbide burs became widely ac-
cepted with the development of the 
Borden Airotor. Interestingly, much of 
the bur testing comparing cutting ef-
ficiencies was actually performed be-
fore the advent of high-speed dental 
handpieces.4-7 Nevertheless, dental 
burs continue to be studied. 

The cutting efficiency of rotary in-
struments can be considered as the 
maximum capacity for removal of 
dental structure with the minimum 
of effort, over a determined period of 
time.8 Typically, studies compare the 
cutting efficiencies of carbide burs 
and diamond rotary cutting instru-
ments,7,9-14 for the purpose of com-
paring different carbide burs to each 
other, comparing different diamond 
rotary cutting instruments to each 
other, or comparing carbide burs to 
diamond rotary cutting instruments. 
In addition, studies may vary by test-
ing these burs using different materi-
als. 

Most of the studies comparing 
the cutting efficiency of different burs 
on different materials have used the 
high-speed air-turbine handpiece.7,9-16 
Dyson and Darvell17 compared the 
performance of 14 conventional air-
turbine handpieces to that of 2 dispos-
able air-turbine handpieces. Although 
electric motor handpieces have been 
in use since the 1960s, they have not 
gained popularity in the United States. 
High-speed air-turbine handpieces 
remain the primary tooth-cutting in-
strument used in the United States, 
despite the popularity of electric mo-

tor handpieces in other parts of the 
world.18 An extensive search of the lit-
erature disclosed few studies in which 
the cutting efficiency was compared 
between an electric handpiece and an 
air-turbine handpiece. In a study by 
Kenyon et al,19 dental students were 
asked to make Class I cavity prepara-
tions with both the electric and the 
air-turbine handpiece. The quality 
of each preparation was evaluated 
by a single faculty member and then 
graded. The mean scores earned by 
students using the electric handpiece 
versus the air-turbine handpiece were 
not significantly different. Eikenberg20 
compared the cutting efficiency of the 
electric motor handpiece versus the 
air-turbine handpiece using Macor 
(Corning, Inc, Corning, NY), a glass 
ceramic material used to simulate 
enamel. Two different types of elec-
tric motor handpieces were compared 
to an air-turbine handpiece, using 2 
different amounts of force. Results 
revealed that, for both forces, elec-
tric motor handpieces demonstrated 
greater efficiency in cutting the ma-
chinable glass ceramic than the air-
turbine handpiece. 

Ercoli et al21,22 also compared the 
cutting efficiency between the electric 
handpiece and air-turbine handpiece 
using Macor, in addition to compar-
ing the mean simulated pulp cham-
ber temperature and required load 
necessary to perform the cutting ac-
tion. Ercoli et al21 first compared cut-
ting efficiency, required cutting action 
load, and pulp chamber temperatures 
of numerous diamond rotary cutting 
instruments of various types, grits 
and design, to a carbide bur (Great 
White Ultra; SS White Burs, Inc), us-
ing an air-turbine handpiece. In an-
other study,22 the same tests were per-
formed with an electric handpiece, 
and the results of each handpiece 
were compared. Specific to cutting 
efficiency between the 2 handpieces, 
the results showed that the electric 
handpiece had a higher cutting ef-
ficiency than the air-turbine hand-
piece, especially as the preparation 
progressed, and when used with the 

carbide bur. 
The purpose of the present study 

was to quantify the cutting efficien-
cies of air-turbine handpieces versus 
electric-motor handpieces using 7 
materials: aluminum oxide ceramic, 
zirconium oxide ceramic, high noble 
metal alloy, noble metal alloy, base 
metal alloy, silver amalgam, and ma-
chinable glass ceramic. These materi-
als, representing those used clinically, 
were cut with both types of hand-
pieces, with a bur specifically recom-
mended by a bur manufacturer for 
each particular material. The null 
hypotheses were that there would be 
no significant difference in cutting ef-
ficiency between the 2 different hand-
pieces used, and that there would be 
no significant difference in the cutting 
efficiency among the various materi-
als used. 

MATERIAL AND METHODS

A telephone survey was conducted 
by contacting the technical depart-
ment of a manufacturer of dental 
burs (Brasseler USA, Savannah, Ga). 
The authors inquired as to which dia-
mond rotary cutting instrument or 
carbide bur the manufacturer recom-
mended for each test material. Based 
on this survey, a list of burs, and the 
material each was to be used on, was 
compiled (Table I). 

A high-speed electric motor hand-
piece (Ti-Max NL400; Brasseler USA) 
and a high-speed air-turbine hand-
piece (KaVo OPTItorque LUX3 649B; 
KaVo America Corp, Lake Zurich, Ill) 
were used in the study. As previous-
ly described,12 each handpiece was 
placed in a brass cylinder attached to 
an L-shaped, clear Plexiglas (Evonik 
Industries, Essen, Germany) acrylic, 
vertical block by a frictionless bear-
ing. A stainless steel holder attached 
to the base of the cutting apparatus 
rigidly held the cutting specimen in 
place. The air-turbine handpiece was 
operated at a speed of 340,000 rpm 
with a constant air pressure of 0.23 
MPa (33 psi) under a coolant wa-
ter spray of 20 ml/min. The electric 

Table I. Carbide burs and diamond rotary cutting instruments and cutting times used in study

handpiece was operated at a speed 
of 200,000 rpm, as recommended 
by the manufacturer, under the same 
conditions. The applied cutting force 
(at the bur-material interface) was 
achieved using a load of 0.90 N, or 
91.5 g (an average cutting force used 
by dentists),12 by attaching a weight 
of 147.5 g to a location on the hand-
piece that was 40 mm from the bur-
handpiece interface. The cutting pro-
cedures, measurements, and handling 
of the materials were all performed by 
a single operator. 

The materials to be tested were 
blocks of aluminum oxide ceramic im-
plant abutment material (CerAdapt; 
Nobel Biocare AB, Göteborg, Swe-
den), zirconium oxide ceramic implant 
abutment material (ZiReal; Biomet 3i, 
Palm Beach Gardens, Fla), high noble 
metal alloy (Classic IV; Jensen Dental, 
North Haven, Conn), noble metal al-
loy (PG-200; Baker Dental Corp, Lake 
Zurich, Ill), base metal alloy (Rexillium 
III; Jeneric/Pentron, Inc, Wallingford, 
Conn), silver amalgam (Contour Fast 
Set; Kerr Corp, Orange, Calif ), and 
machinable glass ceramic (Macor; 
Corning, Inc, Corning, NY). 

The aluminum oxide ceramic im-
plant abutment and zirconium oxide 
ceramic implant abutment raw materi-
als were obtained as rectangular blocks 
(12 x 6 x 6 mm) from their respective 
manufacturers. The metal alloys were 

fabricated from a standardized 12 x 6 
x 6-mm mold using acrylic resin pat-
terns (Duralay; Reliance Dental Mfg 
Co, Worth, Ill), invested, and cast us-
ing conventional procedures,23 in ac-
cordance with manufacturer specifica-
tions. The silver amalgam blocks were 
fabricated by condensing the silver 
amalgam into a standardized 12 x 6 x 
6-mm mold former made of autopoly-
merizing acrylic resin (Jet; Lang Dental 
Mfg Co, Inc, Wheeling, Ill). The ma-
chinable glass ceramic blocks were the 
only specimens that differed in size. 
This material (Macor; Corning, Inc) 
was received from the manufacturer as 
bars, approximately 100 x 7 x 7 mm in 
size, which were cut into smaller 20 x 
7 x 7-mm blocks using a diamond disc 
(Brasseler USA). 

Each block of material was secured 
in an adjustable frame, to allow the en-
tire thickness of each block to be cut 
through, with the holding frame rigidly 
mounted in a stainless steel holder at-
tached to the base of the cutting as-
sembly. The rectangular blocks were 
positioned parallel to the floor. The 
long axis of the bur was parallel to the 
block of material and pulled perpen-
dicularly down into the material (Fig. 
1). The burs (Brasseler USA), and the 
materials for which each bur was rec-
ommended, are listed in Table I. 

The handpiece, secured in the 
brass mounting, was sprayed with 

lubricant for 1 second; KaVo Spray 
lubricant (KaVo America Corp) for 
the air-turbine handpiece, and Pana 
Spray lubricant (NSK Nakanishi, Inc, 
Kanuma, Japan) for the electric hand-
piece. The test bur was placed into the 
handpiece, and the handpiece was run 
for 1 minute to flush the water line of 
all lubricant. The handpiece was then 
run at its maximum speed, with the 
head directed into a graduated cyl-
inder to measure the rate of coolant 
spray for 1 minute, and adjustments 
were made until a 20 ml/min flow 
rate was achieved. This process was 
performed with both the air-turbine 
handpiece and the electric handpiece. 
The diamond rotary cutting instru-
ments and carbide burs (Table I) 
were aligned to the block of material 
so that the end of the bur was 1 mm 
away from the edge of the specimen. 
This measurement was made with a 
periodontal probe (Maryland/Moffitt 
Color-Coded Probe; Hu-Friedy Intl, 
Chicago, Ill) (Fig. 2, A). Every part of 
the bur contacting the substrate was a 
cutting surface. The carbide burs with 
short cutting surface lengths (Crown 
Remover; Brasseler USA) were aligned 
so that the entire cutting surface of the 
bur was placed on the block of mate-
rial. This was necessary because the 
cutting surface of these burs is much 
shorter than that of the other burs 
used in this study (Fig. 2, B). 

Super Course Diamond
(5847.31.014)

DuraCut Diamond
(6847DC.31.016)

Amalgam Cutter
(H32.31.012)

Crown Remover
(H34)

diamond

diamond

carbide

carbide

Brasseler USA, 
Savannah, Ga 

Brasseler USA

Brasseler USA

Brasseler USA

Type Manufacturer

Macor

zirconium oxide
aluminum oxide

silver amalgam

high noble metal
noble metal
base metal

Cut
Material

5 

30 
45 

5 

5 
60 
60 

of Cut(s)
Duration

Bur Number
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Morrison handpiece operated at 600 
to 800 revolutions per minute (rpm).1 
Fortunately, the turn of the century 
was marked by vast improvements to 
these earlier handpieces.

The most notable handpiece of 
the 20th century was a high-speed air-
driven contra-angle handpiece intro-
duced by Borden in 1957. The Borden 
Airotor was an air-turbine handpiece 
that obtained speeds of up to 300,000 
rpm. This handpiece was an immedi-
ate commercial success and began a 
new era of high-speed dentistry.3 Both 
diamond rotary cutting instruments 
and carbide burs became widely ac-
cepted with the development of the 
Borden Airotor. Interestingly, much of 
the bur testing comparing cutting ef-
ficiencies was actually performed be-
fore the advent of high-speed dental 
handpieces.4-7 Nevertheless, dental 
burs continue to be studied. 

The cutting efficiency of rotary in-
struments can be considered as the 
maximum capacity for removal of 
dental structure with the minimum 
of effort, over a determined period of 
time.8 Typically, studies compare the 
cutting efficiencies of carbide burs 
and diamond rotary cutting instru-
ments,7,9-14 for the purpose of com-
paring different carbide burs to each 
other, comparing different diamond 
rotary cutting instruments to each 
other, or comparing carbide burs to 
diamond rotary cutting instruments. 
In addition, studies may vary by test-
ing these burs using different materi-
als. 

Most of the studies comparing 
the cutting efficiency of different burs 
on different materials have used the 
high-speed air-turbine handpiece.7,9-16 
Dyson and Darvell17 compared the 
performance of 14 conventional air-
turbine handpieces to that of 2 dispos-
able air-turbine handpieces. Although 
electric motor handpieces have been 
in use since the 1960s, they have not 
gained popularity in the United States. 
High-speed air-turbine handpieces 
remain the primary tooth-cutting in-
strument used in the United States, 
despite the popularity of electric mo-

tor handpieces in other parts of the 
world.18 An extensive search of the lit-
erature disclosed few studies in which 
the cutting efficiency was compared 
between an electric handpiece and an 
air-turbine handpiece. In a study by 
Kenyon et al,19 dental students were 
asked to make Class I cavity prepara-
tions with both the electric and the 
air-turbine handpiece. The quality 
of each preparation was evaluated 
by a single faculty member and then 
graded. The mean scores earned by 
students using the electric handpiece 
versus the air-turbine handpiece were 
not significantly different. Eikenberg20 
compared the cutting efficiency of the 
electric motor handpiece versus the 
air-turbine handpiece using Macor 
(Corning, Inc, Corning, NY), a glass 
ceramic material used to simulate 
enamel. Two different types of elec-
tric motor handpieces were compared 
to an air-turbine handpiece, using 2 
different amounts of force. Results 
revealed that, for both forces, elec-
tric motor handpieces demonstrated 
greater efficiency in cutting the ma-
chinable glass ceramic than the air-
turbine handpiece. 

Ercoli et al21,22 also compared the 
cutting efficiency between the electric 
handpiece and air-turbine handpiece 
using Macor, in addition to compar-
ing the mean simulated pulp cham-
ber temperature and required load 
necessary to perform the cutting ac-
tion. Ercoli et al21 first compared cut-
ting efficiency, required cutting action 
load, and pulp chamber temperatures 
of numerous diamond rotary cutting 
instruments of various types, grits 
and design, to a carbide bur (Great 
White Ultra; SS White Burs, Inc), us-
ing an air-turbine handpiece. In an-
other study,22 the same tests were per-
formed with an electric handpiece, 
and the results of each handpiece 
were compared. Specific to cutting 
efficiency between the 2 handpieces, 
the results showed that the electric 
handpiece had a higher cutting ef-
ficiency than the air-turbine hand-
piece, especially as the preparation 
progressed, and when used with the 

carbide bur. 
The purpose of the present study 

was to quantify the cutting efficien-
cies of air-turbine handpieces versus 
electric-motor handpieces using 7 
materials: aluminum oxide ceramic, 
zirconium oxide ceramic, high noble 
metal alloy, noble metal alloy, base 
metal alloy, silver amalgam, and ma-
chinable glass ceramic. These materi-
als, representing those used clinically, 
were cut with both types of hand-
pieces, with a bur specifically recom-
mended by a bur manufacturer for 
each particular material. The null 
hypotheses were that there would be 
no significant difference in cutting ef-
ficiency between the 2 different hand-
pieces used, and that there would be 
no significant difference in the cutting 
efficiency among the various materi-
als used. 

MATERIAL AND METHODS

A telephone survey was conducted 
by contacting the technical depart-
ment of a manufacturer of dental 
burs (Brasseler USA, Savannah, Ga). 
The authors inquired as to which dia-
mond rotary cutting instrument or 
carbide bur the manufacturer recom-
mended for each test material. Based 
on this survey, a list of burs, and the 
material each was to be used on, was 
compiled (Table I). 

A high-speed electric motor hand-
piece (Ti-Max NL400; Brasseler USA) 
and a high-speed air-turbine hand-
piece (KaVo OPTItorque LUX3 649B; 
KaVo America Corp, Lake Zurich, Ill) 
were used in the study. As previous-
ly described,12 each handpiece was 
placed in a brass cylinder attached to 
an L-shaped, clear Plexiglas (Evonik 
Industries, Essen, Germany) acrylic, 
vertical block by a frictionless bear-
ing. A stainless steel holder attached 
to the base of the cutting apparatus 
rigidly held the cutting specimen in 
place. The air-turbine handpiece was 
operated at a speed of 340,000 rpm 
with a constant air pressure of 0.23 
MPa (33 psi) under a coolant wa-
ter spray of 20 ml/min. The electric 

Table I. Carbide burs and diamond rotary cutting instruments and cutting times used in study

handpiece was operated at a speed 
of 200,000 rpm, as recommended 
by the manufacturer, under the same 
conditions. The applied cutting force 
(at the bur-material interface) was 
achieved using a load of 0.90 N, or 
91.5 g (an average cutting force used 
by dentists),12 by attaching a weight 
of 147.5 g to a location on the hand-
piece that was 40 mm from the bur-
handpiece interface. The cutting pro-
cedures, measurements, and handling 
of the materials were all performed by 
a single operator. 

The materials to be tested were 
blocks of aluminum oxide ceramic im-
plant abutment material (CerAdapt; 
Nobel Biocare AB, Göteborg, Swe-
den), zirconium oxide ceramic implant 
abutment material (ZiReal; Biomet 3i, 
Palm Beach Gardens, Fla), high noble 
metal alloy (Classic IV; Jensen Dental, 
North Haven, Conn), noble metal al-
loy (PG-200; Baker Dental Corp, Lake 
Zurich, Ill), base metal alloy (Rexillium 
III; Jeneric/Pentron, Inc, Wallingford, 
Conn), silver amalgam (Contour Fast 
Set; Kerr Corp, Orange, Calif ), and 
machinable glass ceramic (Macor; 
Corning, Inc, Corning, NY). 

The aluminum oxide ceramic im-
plant abutment and zirconium oxide 
ceramic implant abutment raw materi-
als were obtained as rectangular blocks 
(12 x 6 x 6 mm) from their respective 
manufacturers. The metal alloys were 

fabricated from a standardized 12 x 6 
x 6-mm mold using acrylic resin pat-
terns (Duralay; Reliance Dental Mfg 
Co, Worth, Ill), invested, and cast us-
ing conventional procedures,23 in ac-
cordance with manufacturer specifica-
tions. The silver amalgam blocks were 
fabricated by condensing the silver 
amalgam into a standardized 12 x 6 x 
6-mm mold former made of autopoly-
merizing acrylic resin (Jet; Lang Dental 
Mfg Co, Inc, Wheeling, Ill). The ma-
chinable glass ceramic blocks were the 
only specimens that differed in size. 
This material (Macor; Corning, Inc) 
was received from the manufacturer as 
bars, approximately 100 x 7 x 7 mm in 
size, which were cut into smaller 20 x 
7 x 7-mm blocks using a diamond disc 
(Brasseler USA). 

Each block of material was secured 
in an adjustable frame, to allow the en-
tire thickness of each block to be cut 
through, with the holding frame rigidly 
mounted in a stainless steel holder at-
tached to the base of the cutting as-
sembly. The rectangular blocks were 
positioned parallel to the floor. The 
long axis of the bur was parallel to the 
block of material and pulled perpen-
dicularly down into the material (Fig. 
1). The burs (Brasseler USA), and the 
materials for which each bur was rec-
ommended, are listed in Table I. 

The handpiece, secured in the 
brass mounting, was sprayed with 

lubricant for 1 second; KaVo Spray 
lubricant (KaVo America Corp) for 
the air-turbine handpiece, and Pana 
Spray lubricant (NSK Nakanishi, Inc, 
Kanuma, Japan) for the electric hand-
piece. The test bur was placed into the 
handpiece, and the handpiece was run 
for 1 minute to flush the water line of 
all lubricant. The handpiece was then 
run at its maximum speed, with the 
head directed into a graduated cyl-
inder to measure the rate of coolant 
spray for 1 minute, and adjustments 
were made until a 20 ml/min flow 
rate was achieved. This process was 
performed with both the air-turbine 
handpiece and the electric handpiece. 
The diamond rotary cutting instru-
ments and carbide burs (Table I) 
were aligned to the block of material 
so that the end of the bur was 1 mm 
away from the edge of the specimen. 
This measurement was made with a 
periodontal probe (Maryland/Moffitt 
Color-Coded Probe; Hu-Friedy Intl, 
Chicago, Ill) (Fig. 2, A). Every part of 
the bur contacting the substrate was a 
cutting surface. The carbide burs with 
short cutting surface lengths (Crown 
Remover; Brasseler USA) were aligned 
so that the entire cutting surface of the 
bur was placed on the block of mate-
rial. This was necessary because the 
cutting surface of these burs is much 
shorter than that of the other burs 
used in this study (Fig. 2, B). 
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Cutting efficiency was defined as 
the difference in weight divided by 
the length of cutting time (g/s). Be-
fore each test run, the specimen block 
was rinsed for 1 minute, dried with 
compressed air, and then weighed us-
ing a scale (Denver X-100A; Denver 
Instrument Corp, Denver, Colo). This 
weight represented the weight of the 
material at baseline. After arranging 
the material and the handpiece onto 

the apparatus, the bur was allowed 
to cut the material for a specific num-
ber of seconds using a timer (Jarden 
Corp, Rye, NY). The specific amount 
of time used for each material (Table 
I) was determined by cutting a speci-
men of each material with its speci-
fied bur and with each handpiece. A 
time, shorter than the time it took the 
faster handpiece to cut through the 
entire width of the material, was as-

signed. At the end of this time period, 
the materials were rinsed and dried 
before being weighed again. The new 
weight represented the weight of the 
material after the predetermined cut 
duration (in seconds). The cutting ef-
ficiency was then calculated by divid-
ing the difference in weight before and 
after cutting by the cutting duration. 
Following each specimen testing, the 
handpieces and the apparatus were 
evaluated to ensure testing condi-
tions remained the same. Handpieces 
were again lubricated and operated 
for 1 minute to flush the water line. 
The flow rate of the coolant spray was 
adjusted to maintain 20 ml/min, be-
fore the next test. Each bur was used 
only once to standardize testing con-
ditions. Each material was cut 110 
times with each handpiece. Therefore, 
the total number of cuts in the study 
was 220 cuts per material. 

This data set displayed neither ho-
mogeneity of variance nor normality. 
Therefore, the data were transformed 
to a rank-based configuration. This 
allowed the data to be analyzed using 
a 2-way analysis of variance (ANOVA) 
followed by Tukey’s HSD test (α=.05), 
allowing interactions between materi-
als and handpieces to be determined.

RESULTS

The results of this study demon-
strated that the electric handpiece 
was more efficient than the air-turbine 
handpiece in cutting the dental mate-
rials tested (F=3098.9, P<.001). The 
electric handpiece was significantly 
more efficient in cutting the material, 
0.0114 ±0.0001 g/s (mean ± stan-
dard deviation) than the air-turbine 
handpiece, 0.0052 ±0.00001 g/s 
(Table II). Some materials were cut 
more easily than others (F=5292.9, 
P<.001). The handpieces cut high 
noble metal alloy most efficiently 
(0.0260 ±0.0001 g/s), followed by 
silver amalgam (0.0201 ±0.0001 g/s), 
and then the machinable glass ceram-
ic (0.0101 ±0.0001 g/s). There was 
no significant difference in mean cut-
ting efficiency between aluminum ox-

 1  Bur cutting surface shown paralleling material. 

 2  A, Alignment of bur 1 mm from edge of substrate. B, Align-
ment of carbide burs with short cutting surface lengths on block.

A

B

ide (0.0008 ±0.0001 g/s), noble metal 
alloy (0.0005 ±0.0001 g/s), zirconium 
oxide (0.0005 ±0.0001 g/s), and base 
metal alloy (0.0003 ±0.00001 g/s) 
(Table III).

Most importantly, there was a sig-
nificant interaction in cutting efficien-
cy between the type of material cut 

and the handpiece used (F=1119.8, 
P<.001) (Fig. 3; Table IV). The high no-
ble metal alloy, silver amalgam, and ma-
chinable glass ceramic were cut more 
efficiently with the electric handpiece 
(0.0388 ±0.0002 g/s, 0.0260 ±0.0002 
g/s, 0.0122 ±0.0002 g/s, respectively) 
than with the air-turbine handpiece 

(0.0125 ±0.0002 g/s, 0.0142 ±0.0002 
g/s, 0.0079 ±0.0002 g/s, respectively). 
For aluminum oxide, zirconium oxide, 
noble metal alloy, and base metal alloy, 
there was no difference in cutting effi-
ciency between the electric handpiece 
and the air-turbine handpiece (Fig. 3). 

Table II. Cutting efficiency of the air-turbine and electric handpieces

Table III. Cutting efficiency (n=220) of different materials

 3  Interaction between handpieces and materials tested. Error bars signify standard deviations.
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the difference in weight divided by 
the length of cutting time (g/s). Be-
fore each test run, the specimen block 
was rinsed for 1 minute, dried with 
compressed air, and then weighed us-
ing a scale (Denver X-100A; Denver 
Instrument Corp, Denver, Colo). This 
weight represented the weight of the 
material at baseline. After arranging 
the material and the handpiece onto 

the apparatus, the bur was allowed 
to cut the material for a specific num-
ber of seconds using a timer (Jarden 
Corp, Rye, NY). The specific amount 
of time used for each material (Table 
I) was determined by cutting a speci-
men of each material with its speci-
fied bur and with each handpiece. A 
time, shorter than the time it took the 
faster handpiece to cut through the 
entire width of the material, was as-

signed. At the end of this time period, 
the materials were rinsed and dried 
before being weighed again. The new 
weight represented the weight of the 
material after the predetermined cut 
duration (in seconds). The cutting ef-
ficiency was then calculated by divid-
ing the difference in weight before and 
after cutting by the cutting duration. 
Following each specimen testing, the 
handpieces and the apparatus were 
evaluated to ensure testing condi-
tions remained the same. Handpieces 
were again lubricated and operated 
for 1 minute to flush the water line. 
The flow rate of the coolant spray was 
adjusted to maintain 20 ml/min, be-
fore the next test. Each bur was used 
only once to standardize testing con-
ditions. Each material was cut 110 
times with each handpiece. Therefore, 
the total number of cuts in the study 
was 220 cuts per material. 

This data set displayed neither ho-
mogeneity of variance nor normality. 
Therefore, the data were transformed 
to a rank-based configuration. This 
allowed the data to be analyzed using 
a 2-way analysis of variance (ANOVA) 
followed by Tukey’s HSD test (α=.05), 
allowing interactions between materi-
als and handpieces to be determined.

RESULTS

The results of this study demon-
strated that the electric handpiece 
was more efficient than the air-turbine 
handpiece in cutting the dental mate-
rials tested (F=3098.9, P<.001). The 
electric handpiece was significantly 
more efficient in cutting the material, 
0.0114 ±0.0001 g/s (mean ± stan-
dard deviation) than the air-turbine 
handpiece, 0.0052 ±0.00001 g/s 
(Table II). Some materials were cut 
more easily than others (F=5292.9, 
P<.001). The handpieces cut high 
noble metal alloy most efficiently 
(0.0260 ±0.0001 g/s), followed by 
silver amalgam (0.0201 ±0.0001 g/s), 
and then the machinable glass ceram-
ic (0.0101 ±0.0001 g/s). There was 
no significant difference in mean cut-
ting efficiency between aluminum ox-

 1  Bur cutting surface shown paralleling material. 

 2  A, Alignment of bur 1 mm from edge of substrate. B, Align-
ment of carbide burs with short cutting surface lengths on block.
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ide (0.0008 ±0.0001 g/s), noble metal 
alloy (0.0005 ±0.0001 g/s), zirconium 
oxide (0.0005 ±0.0001 g/s), and base 
metal alloy (0.0003 ±0.00001 g/s) 
(Table III).

Most importantly, there was a sig-
nificant interaction in cutting efficien-
cy between the type of material cut 

and the handpiece used (F=1119.8, 
P<.001) (Fig. 3; Table IV). The high no-
ble metal alloy, silver amalgam, and ma-
chinable glass ceramic were cut more 
efficiently with the electric handpiece 
(0.0388 ±0.0002 g/s, 0.0260 ±0.0002 
g/s, 0.0122 ±0.0002 g/s, respectively) 
than with the air-turbine handpiece 

(0.0125 ±0.0002 g/s, 0.0142 ±0.0002 
g/s, 0.0079 ±0.0002 g/s, respectively). 
For aluminum oxide, zirconium oxide, 
noble metal alloy, and base metal alloy, 
there was no difference in cutting effi-
ciency between the electric handpiece 
and the air-turbine handpiece (Fig. 3). 
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Table III. Cutting efficiency (n=220) of different materials
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DISCUSSION

The results of this study demon-
strated that there was a significant 
difference between the 2 handpieces 
used. There was also a significant dif-
ference in the cutting efficiency be-
tween different materials, and there 
was a significant interaction between 
the material cut and the handpieces 
used. Therefore, the null hypotheses 
were rejected.

A review of the literature revealed 
only a few studies that compared the 
cutting quality and/or efficiency of 
the electric handpiece to that of the 
air-turbine handpiece. Kenyon et al19 
compared the quality of Class I cav-
ity preparations made by dental stu-
dents with both the electric and the 
air-turbine handpieces, but did not 
discuss the cutting efficiencies of the 
2 handpieces. The Eikenberg study20 
was designed to compare the cutting 
efficiency of the electric handpiece 
and the air-turbine handpiece. Two 
different electric handpieces were 
compared to an air-turbine hand-
piece, using machinable glass ceramic 
as the specimen, while applying 2 dif-
ferent forces. The author found that 
the electric handpieces were more 
efficient at cutting machinable glass 
ceramic, at both forces, than the air-
turbine handpiece. Ercoli et al21,22 
compared the cutting efficiency, as 
well as the resultant simulated pulp 
temperature and required applied 
load, between the electric handpiece 
and air-turbine handpiece. While us-
ing a variety of diamond rotary instru-
ments and a carbide bur, with Macor 
as the specimen, the author found the 
electric handpiece to have a higher 
cutting efficiency than the air-turbine 

handpiece, especially as the cutting 
progressed, and when using the car-
bide bur versus the various diamond 
rotary instruments. 

Consistent with the results of 
Eikenberg and Ercoli et al,20,22 the 
current study demonstrated that the 
electric handpiece was more efficient 
than the air-turbine handpiece. In ad-
dition, the interaction showed that 
the cutting efficiency of the electric 
handpiece was noticeably better on 
the high noble metal alloy, silver amal-
gam, and machinable glass ceramic 
specimens than the air-turbine hand-
piece. The cutting efficiency for the 
other specimens, aluminum oxide, 
zirconium oxide, noble metal alloy, 
and base metal alloy, were not signifi-
cantly different with either handpiece. 

The smaller differences found with 
these materials compared to those 
found with the high noble metal al-
loy, silver amalgam, and machinable 
glass ceramic may be related to the 
hardness of each of these materi-
als. The Vicker’s hardness values for 
silver amalgam, high noble metal al-
loy, and machinable glass ceramic are 
120, 220, and 250 kg/mm2, respec-
tively, as purported by the manufac-
turers. However, the values for noble 
metal alloy, base metal alloy, zirco-
nium oxide, and aluminum oxide, as 
purported by the manufacturers, are 
360, 360, 1200, and 1440 kg/mm2, 
respectively. The harder the material, 
the harder it will be to cut. Clinically, 
when a dentist cuts a harder material, 
more force is placed on that material 
to cut it more efficiently. The force 
used in this study (147.5 g, or 91 g at 
the bur tip) may have been inadequate 
to allow the handpieces to cut the 

harder material efficiently. Therefore, 
the use of greater force may have re-
sulted in a more noticeable difference 
between the 2 types of handpieces. 
Similarly, the ductility of the materials 
may have had a role. The more duc-
tile the material, the more efficiently 
it is cut. Howell16 stated that the 
cross-cut fissure carbide bur had the 
advantageous feature of “snatching” 
the metal surface that was ductile in 
nature. This characteristic was also 
recognized by Miyawaki,11 who stated 
that it was more difficult to cut alloys 
that were harder and less ductile. 

Advocates of the electric hand-
piece have suggested that the con-
stant torque and, therefore, lack of 
“stalling” from the electric handpiece, 
makes it more efficient at cutting 
than the air-turbine handpiece.18 Al-
though complete stalling was not ex-
perienced in this study, it is possible 
that the air-turbine handpiece slowed 
down throughout some of the cuts 
or several times during a cut. Unfor-
tunately, this is an aspect that could 
not be measured in the current study; 
therefore, this suggestion is specu-
lative. It should also be noted that 
the handpieces were run at different 
rpms. The air-turbine handpiece was 
run at 340,000 rpm, whereas the elec-
tric handpiece was run at 200,000 
rpm. Even at the lower rpm, the elec-
tric handpiece performed as well as, 
if not better than, the air-turbine 
handpiece. It is expected that at equal 
rpms, the electric handpiece may be 
even more efficient at cutting the dif-
ferent materials. In addition, electric 
handpieces are considered heavier 
than air-turbine handpieces.18 The 
heavier electric handpiece may place 

Table IV. Two-way ANOVA for cutting efficiency of 2 handpieces and different materials

Materials

Handpieces

Material x handpiece

6

1

6

df

0.025

0.015

0.005

Square

0.151

0.015

0.032

Sum of Squares
Type III Mean

5292.9

3098.9

1119.8

FSource

.001

.001

.001

P

more force on the specimen, resulting 
in a greater cutting efficiency.

There are several limitations to 
this study. The carbide burs with 
short cutting surface lengths (Crown 
Remover; Brasseler USA) were placed 
so that the entire cutting surface was 
positioned on the block of material. 
This was done by visually approximat-
ing the placement of the bur. This is 
not as exacting as using a periodon-
tal probe to measure the placement. 
Slight differences in placement of 
the carbide burs with short cutting 
surface lengths could result in differ-
ent cutting efficiencies. Involvement 
of any part of the shank would make 
the cutting efficiency lower. Standard-
ization of the cuts was attempted by 
placing the cutting edge of the bur 
parallel to the block of the material 
to be cut. This process is dependent 
on the operator, and could incur error 
as well. The bur cutting surface that 
is not parallel to the block of mate-
rial may cut less efficiently, producing 
varying results. After each cut, the 
block of material was removed from 
the clamp, washed, dried, and then 
weighed. The block was then placed 
back into the clamp, or a new block 
of material was placed into the clamp. 
Placement of the block into the clamp 
was intended to replicate, as nearly as 
possible, the placement of the block 
for the previous cut. The material 
was placed as close to the center of 
the clamp as possible. However, any 
deviation from the center may have 
resulted in the application of differ-
ent forces, thus, changing the cutting 
efficiency. 

The current study was able to 
quantify the cutting efficiency of the 
electric handpiece and the air-turbine 
handpiece. The quantification and 
comparison of the cutting efficiency 
of the electric handpiece and the air-
turbine handpiece on various materi-
als used in dentistry, as in this study, 
suggest that the electric handpiece 
is more efficient than the air-turbine 
handpiece. 

CONCLUSIONS

This study was performed to de-
termine which handpiece, the electric 
or the air-turbine handpiece, is more 
efficient at cutting various materials 
used in dentistry. Within the limita-
tions of this study, the results revealed 
that there was a significant difference 
in cutting efficiency between the elec-
tric handpiece and the air-turbine 
handpiece, especially for particular 
materials. The electric handpiece is 
more efficient than the air-turbine 
handpiece at cutting high noble metal 
alloy, silver amalgam, and machinable 
glass ceramic. 
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DISCUSSION

The results of this study demon-
strated that there was a significant 
difference between the 2 handpieces 
used. There was also a significant dif-
ference in the cutting efficiency be-
tween different materials, and there 
was a significant interaction between 
the material cut and the handpieces 
used. Therefore, the null hypotheses 
were rejected.

A review of the literature revealed 
only a few studies that compared the 
cutting quality and/or efficiency of 
the electric handpiece to that of the 
air-turbine handpiece. Kenyon et al19 
compared the quality of Class I cav-
ity preparations made by dental stu-
dents with both the electric and the 
air-turbine handpieces, but did not 
discuss the cutting efficiencies of the 
2 handpieces. The Eikenberg study20 
was designed to compare the cutting 
efficiency of the electric handpiece 
and the air-turbine handpiece. Two 
different electric handpieces were 
compared to an air-turbine hand-
piece, using machinable glass ceramic 
as the specimen, while applying 2 dif-
ferent forces. The author found that 
the electric handpieces were more 
efficient at cutting machinable glass 
ceramic, at both forces, than the air-
turbine handpiece. Ercoli et al21,22 
compared the cutting efficiency, as 
well as the resultant simulated pulp 
temperature and required applied 
load, between the electric handpiece 
and air-turbine handpiece. While us-
ing a variety of diamond rotary instru-
ments and a carbide bur, with Macor 
as the specimen, the author found the 
electric handpiece to have a higher 
cutting efficiency than the air-turbine 

handpiece, especially as the cutting 
progressed, and when using the car-
bide bur versus the various diamond 
rotary instruments. 

Consistent with the results of 
Eikenberg and Ercoli et al,20,22 the 
current study demonstrated that the 
electric handpiece was more efficient 
than the air-turbine handpiece. In ad-
dition, the interaction showed that 
the cutting efficiency of the electric 
handpiece was noticeably better on 
the high noble metal alloy, silver amal-
gam, and machinable glass ceramic 
specimens than the air-turbine hand-
piece. The cutting efficiency for the 
other specimens, aluminum oxide, 
zirconium oxide, noble metal alloy, 
and base metal alloy, were not signifi-
cantly different with either handpiece. 

The smaller differences found with 
these materials compared to those 
found with the high noble metal al-
loy, silver amalgam, and machinable 
glass ceramic may be related to the 
hardness of each of these materi-
als. The Vicker’s hardness values for 
silver amalgam, high noble metal al-
loy, and machinable glass ceramic are 
120, 220, and 250 kg/mm2, respec-
tively, as purported by the manufac-
turers. However, the values for noble 
metal alloy, base metal alloy, zirco-
nium oxide, and aluminum oxide, as 
purported by the manufacturers, are 
360, 360, 1200, and 1440 kg/mm2, 
respectively. The harder the material, 
the harder it will be to cut. Clinically, 
when a dentist cuts a harder material, 
more force is placed on that material 
to cut it more efficiently. The force 
used in this study (147.5 g, or 91 g at 
the bur tip) may have been inadequate 
to allow the handpieces to cut the 

harder material efficiently. Therefore, 
the use of greater force may have re-
sulted in a more noticeable difference 
between the 2 types of handpieces. 
Similarly, the ductility of the materials 
may have had a role. The more duc-
tile the material, the more efficiently 
it is cut. Howell16 stated that the 
cross-cut fissure carbide bur had the 
advantageous feature of “snatching” 
the metal surface that was ductile in 
nature. This characteristic was also 
recognized by Miyawaki,11 who stated 
that it was more difficult to cut alloys 
that were harder and less ductile. 

Advocates of the electric hand-
piece have suggested that the con-
stant torque and, therefore, lack of 
“stalling” from the electric handpiece, 
makes it more efficient at cutting 
than the air-turbine handpiece.18 Al-
though complete stalling was not ex-
perienced in this study, it is possible 
that the air-turbine handpiece slowed 
down throughout some of the cuts 
or several times during a cut. Unfor-
tunately, this is an aspect that could 
not be measured in the current study; 
therefore, this suggestion is specu-
lative. It should also be noted that 
the handpieces were run at different 
rpms. The air-turbine handpiece was 
run at 340,000 rpm, whereas the elec-
tric handpiece was run at 200,000 
rpm. Even at the lower rpm, the elec-
tric handpiece performed as well as, 
if not better than, the air-turbine 
handpiece. It is expected that at equal 
rpms, the electric handpiece may be 
even more efficient at cutting the dif-
ferent materials. In addition, electric 
handpieces are considered heavier 
than air-turbine handpieces.18 The 
heavier electric handpiece may place 

Table IV. Two-way ANOVA for cutting efficiency of 2 handpieces and different materials

Materials

Handpieces

Material x handpiece

6

1

6

df

0.025

0.015

0.005

Square

0.151

0.015

0.032

Sum of Squares
Type III Mean

5292.9

3098.9

1119.8

FSource

.001

.001

.001

P

more force on the specimen, resulting 
in a greater cutting efficiency.

There are several limitations to 
this study. The carbide burs with 
short cutting surface lengths (Crown 
Remover; Brasseler USA) were placed 
so that the entire cutting surface was 
positioned on the block of material. 
This was done by visually approximat-
ing the placement of the bur. This is 
not as exacting as using a periodon-
tal probe to measure the placement. 
Slight differences in placement of 
the carbide burs with short cutting 
surface lengths could result in differ-
ent cutting efficiencies. Involvement 
of any part of the shank would make 
the cutting efficiency lower. Standard-
ization of the cuts was attempted by 
placing the cutting edge of the bur 
parallel to the block of the material 
to be cut. This process is dependent 
on the operator, and could incur error 
as well. The bur cutting surface that 
is not parallel to the block of mate-
rial may cut less efficiently, producing 
varying results. After each cut, the 
block of material was removed from 
the clamp, washed, dried, and then 
weighed. The block was then placed 
back into the clamp, or a new block 
of material was placed into the clamp. 
Placement of the block into the clamp 
was intended to replicate, as nearly as 
possible, the placement of the block 
for the previous cut. The material 
was placed as close to the center of 
the clamp as possible. However, any 
deviation from the center may have 
resulted in the application of differ-
ent forces, thus, changing the cutting 
efficiency. 

The current study was able to 
quantify the cutting efficiency of the 
electric handpiece and the air-turbine 
handpiece. The quantification and 
comparison of the cutting efficiency 
of the electric handpiece and the air-
turbine handpiece on various materi-
als used in dentistry, as in this study, 
suggest that the electric handpiece 
is more efficient than the air-turbine 
handpiece. 

CONCLUSIONS

This study was performed to de-
termine which handpiece, the electric 
or the air-turbine handpiece, is more 
efficient at cutting various materials 
used in dentistry. Within the limita-
tions of this study, the results revealed 
that there was a significant difference 
in cutting efficiency between the elec-
tric handpiece and the air-turbine 
handpiece, especially for particular 
materials. The electric handpiece is 
more efficient than the air-turbine 
handpiece at cutting high noble metal 
alloy, silver amalgam, and machinable 
glass ceramic. 
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